Our Research

phase space.png

Mature organs respond to the body's changing needs by moving between different 'states' of cellular flux.

The same organ exhibits different kinds of cell flux over time. This is because flux is dynamically tuned to optimize organ function. At homeostasis, cell addition balances loss, giving rise to equilibrium. Upon environmental change, transient disequilibrium promotes physiological growth or shrinkage. When disequilibrium becomes chronic, it leads to pathogenic resizing and disease. We conceptualize these differences as 'organ states' that form a phase space.


What does organ-scale cellular flux look like, and how do these dynamics arise?

We know many molecular signals that impact cellular flux. Yet, we have scarcely begun to discover how these signals alter the 'lifecycle' of individual cells or understand how cells' life cycles integrate to create diverse organ states. For most organs, even basic spatiotemporal features of these cell behaviors remain mysterious.

cycle.001.jpeg

Our goal is to explain—and ultimately even predict—how large populations of individual cells act to create diverse organ states in response to external change.

We believe that the cell dynamics of adult organs can be understood in the granular way that we currently understand embryonic gastrulation. Toward this vision, we build new experimental approaches and conceptual models to decipher how cell life cycles and molecular signaling together create the organ phase space.


The fly gut is our testing ground for probing cell dynamics at the organ-scale…

The adult Drosophila midgut, or fly gut, is a stem-cell based digestive organ. Its relative simplicity (~10,000 cells), extreme genetic tractability, and ease of handling make it ideal for exploring how single-cell behaviors scale to produce whole-organ phenotypes. Because the organ phase space and the cellular life cycle are general features of adult organs, the lessons we learn from the fly gut will provide a general template for organs in other animals, including humans.

Z-IQrefeed_lowmagBIllum_levrotcrop.jpg

MAX_JCS001A_t1_final-composite_CyanHot_gaus_RGB.jpg

…and is a powerful model to study how dynamic cell flux maintains healthy organ form.

The fly gut is also an archetypical example of an epithelial tube, which is both the most primitive organ form and the form of most organs in our own bodies. As our ability to grow human organs in a dish becomes closer to reality, understanding how general principles of epithelial organization operate with the particular dynamics of adult organs becomes crucial for designing better, safer organ therapies. We leverage these well-understood principles of epithelial organization in order to study how the dynamics of cellular flux in the fly gut both reinforce and respond to organ shape.